51 research outputs found

    T-Bet and Eomes Regulate the Balance between the Effector/Central Memory T Cells versus Memory Stem Like T Cells

    Get PDF
    Memory T cells are composed of effector, central, and memory stem cells. Previous studies have implicated that both T-bet and Eomes are involved in the generation of effector and central memory CD8 T cells. The exact role of these transcription factors in shaping the memory T cell pool is not well understood, particularly with memory stem T cells. Here, we demonstrate that both T-bet or Eomes are required for elimination of established tumors by adoptively transferred CD8 T cells. We also examined the role of T-bet and Eomes in the generation of tumor-specific memory T cell subsets upon adoptive transfer. We showed that combined T-bet and Eomes deficiency resulted in a severe reduction in the number of effector/central memory T cells but an increase in the percentage of CD62LhighCD44low Sca-1+ T cells which were similar to the phenotype of memory stem T cells. Despite preserving large numbers of phenotypic memory stem T cells, the lack of both of T-bet and Eomes resulted in a profound defect in antitumor memory responses, suggesting T-bet and Eomes are crucial for the antitumor function of these memory T cells. Our study establishes that T-bet and Eomes cooperate to promote the phenotype of effector/central memory CD8 T cell versus that of memory stem like T cells. © 2013 Li et al

    Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer

    Get PDF
    Few patients with triple negative breast cancer (TNBC) benefit from immune checkpoint inhibitors with complete and durable remissions being quite rare. Oncogenes can regulate tumor immune infiltration, however whether oncogenes dictate diminished response to immunotherapy and whether these effects are reversible remains poorly understood. Here, we report that TNBCs with elevated MYC expression are resistant to immune checkpoint inhibitor therapy. Using mouse models and patient data, we show that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, mice experience tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and when strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors. The oncoprotein c-Myc is often overexpressed in triple negative breast cancer and has a role in tumor progression and resistance to therapy. Here the authors show that elevated MYC expression is correlated with low immune infiltration, diminished MHC-I pathway expression and that CpG/aOX40 treatment could overcome resistance to PD-L1 blockade in MYC-high breast tumors.Peer reviewe

    Prostaglandin E2 Synthesizing Enzymes in Rheumatoid Arthritis B Cells and the Effects of B Cell Depleting Therapy on Enzyme Expression

    Get PDF
    Introduction: B cells may play an important role in promoting immune activation in the rheumatoid synovium and can produce prostaglandin E-2 (PGE(2)) when activated. In its turn, PGE(2) formed by cyclooxygenase (COX) and microsomal prostaglandin E-2 synthase 1 (MPGES1) contributes to the rheumatoid arthritis (RA) pathological process. Therapeutic depletion of B cells results in important improvement in controlling disease activity in rheumatoid patients. Therefore we investigated the expression of PGE(2) pathway enzymes in RA B cells and evaluated the effects of B cell depleting therapy on their expression in RA tissue. Methods: B cells expressing MPGES1 and COX-2 were identified by flow cytometry in in vitro stimulated and control mononuclear cells isolated from synovial fluid and peripheral blood of RA patients. Synovial biopsies were obtained from 24 RA patients before and at two consecutive time points after rituximab therapy. Expression of MPGES1, COX-1 and COX-2, as well as interleukin (IL)-1 beta and IL-6, known inducers of MPGES1, was quantified in immunostained biopsy sections using computerized image analysis. Results: Expression of MPGES1 or COX-2 was significantly upregulated upon stimulation of B cells from blood and synovial fluid while control cells displayed no detectable enzymes. In synovial biopsy sections, the expression of MPGES1, COX-1 or COX-2 was resistant to rituximab therapy at 8 or 16 weeks after start of treatment. Furthermore expression of IL-1 beta in the synovial tissue remained unchanged, while IL-6 tended to decrease after therapy. Conclusions: Therapy with B cell depleting agents, although efficient in achieving good clinical and radiographic response in RA patients, leaves important inflammatory pathways in the rheumatoid synovium essentially unaffecte

    Neutrophils Reduce the Parasite Burden in Leishmania (Leishmania) amazonensis-Infected Macrophages

    Get PDF
    Background: Studies on the role of neutrophils in Leishmania infection were mainly performed with L. (L) major, whereas less information is available for L. (L) amazonensis. Previous results from our laboratory showed a large infiltrate of neutrophils in the site of infection in a mouse strain resistant to L. (L.) amazonensis (C3H/HePas). in contrast, the susceptible strain (BALB/c) displayed a predominance of macrophages harboring a high number of amastigotes and very few neutrophils. These findings led us to investigate the interaction of inflammatory neutrophils with L. (L.) amazonensis-infected macrophages in vitro.Methodology/Principal Findings: Mouse peritoneal macrophages infected with L. (L.) amazonensis were co-cultured with inflammatory neutrophils, and after four days, the infection was quantified microscopically. Data are representative of three experiments with similar results. the main findings were 1) intracellular parasites were efficiently destroyed in the co-cultures; 2) the leishmanicidal effect was similar when cells were obtained from mouse strains resistant (C3H/HePas) or susceptible (BALB/c) to L. (L.) amazonensis; 3) parasite destruction did not require contact between infected macrophages and neutrophils; 4) tumor necrosis factor alpha (TNF-alpha), neutrophil elastase and platelet activating factor (PAF) were involved with the leishmanicidal activity, and 5) destruction of the parasites did not depend on generation of oxygen or nitrogen radicals, indicating that parasite clearance did not involve the classical pathway of macrophage activation by TNF-alpha, as reported for other Leishmania species.Conclusions/Significance: the present results provide evidence that neutrophils in concert with macrophages play a previously unrecognized leishmanicidal effect on L. (L.) amazonensis. We believe these findings may help to understand the mechanisms involved in innate immunity in cutaneous infection by this Leishmania species.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilWeb of Scienc

    The Features of the Synovium in Early Rheumatoid Arthritis According to the 2010 ACR/EULAR Classification Criteria

    Get PDF
    OBJECTIVES: It has been shown in early arthritis cohorts that the 2010 ACR/EULAR criteria for rheumatoid arthritis (RA) enable an earlier diagnosis, perhaps at the cost of a somewhat more heterogeneous patient population. We describe the features of synovial inflammation in RA patients classified according to these new criteria. METHODS: At baseline, synovial tissue biopsy samples were obtained from disease-modifying antirheumatic drug (DMARD)-naïve early RA patients (clinical signs and symptoms <1 year). Synovial tissue was analyzed for cell infiltration, vascularity, and expression of adhesion molecules. Stained sections were evaluated by digital image analysis. Patients were classified according to the two different sets of classification criteria, autoantibody status, and outcome. FINDINGS: Synovial tissue of 69 RA patients according to 2010 ACR/EULAR criteria was analyzed: 56 patients who fulfilled the criteria for RA at baseline and 13 who were initially diagnosed as undifferentiated arthritis but fulfilled criteria for RA upon follow up. The synovium at baseline was infiltrated by plasma cells, macrophages, and T cells as well as other cells, and findings were comparable to those when patients were selected based on the 1987 ACR criteria for RA. There was no clear cut difference in the characteristics of the synovium between RA patients initially diagnosed as undifferentiated arthritis and those who already fulfilled classification criteria at baseline. CONCLUSION: The features of synovial inflammation are similar when the 2010 ACR/EULAR classification criteria are used compared to the 1987 ACR criteria

    A Fluorescence Reporter Model Defines “Tip-DCs” as the Cellular Source of Interferon β in Murine Listeriosis

    Get PDF
    Production of type I interferons, consisting mainly of multiple IFNα subtypes and IFNβ, represents an essential part of the innate immune defense against invading pathogens. While in most situations, namely viral infections, this class of cytokines is indispensable for host survival they mediate a detrimental effect during infection with L. monocytogenes by rendering macrophages insensitive towards IFNγ signalling which leads to a lethal bacterial pathology in mice. Due to a lack of suitable analytic tools the precise identity of the cell population responsible for type I IFN production remains ill-defined and so far these cells have been described to be macrophages. As in general IFNβ is the first type I interferon to be produced, we took advantage of an IFNβ fluorescence reporter-knockin mouse model in which YFP is expressed from a bicistronic mRNA linked by an IRES to the endogenous ifnb mRNA to assess the IFNβ production on a single cell level in situ. Our results showed highest frequencies and absolute numbers of IFNβ+ cells in the spleen 24 h after infection with L. monocytogenes where they were located predominately in the white pulp within the foci of infection. Detailed FACS surface marker analyses, intracellular cytokine stainings and T cell proliferation assays revealed that the IFNβ+ cells were a phenotypically and functionally further specialized subpopulation of TNF and iNOS producing DCs (Tip-DCs) which are known to be essential for the early containment of L. monocytogenes infection. We proved that the IFNβ+ cells exhibited the hallmark characteristics of Tip-DCs as they produced iNOS and TNF and possessed T cell priming abilities. These results point to a yet unappreciated ambiguous role for a multi-effector, IFNβ producing subpopulation of Tip-DCs in controlling the balance between containment of L. monocytogenes infection and effects detrimental to the host driven by IFNβ

    Comparative Study of Hematopoietic Differentiation between Human Embryonic Stem Cell Lines

    Get PDF
    Directed differentiation of human embryonic stem cells (hESCs) into any desired cell type has been hailed as a therapeutic promise to cure many human diseases. However, substantial roadblocks still exist for in vitro differentiation of hESCs into distinct cell types, including T lymphocytes. Here we examined the hematopoietic differentiation potential of six different hESC lines. We compare their ability to develop into CD34+ or CD34+CD45+ hematopoietic precursor populations under several differentiation conditions. Comparison of lymphoid potential of hESC derived- and fetal tissue derived-hematopoietic precursors was also made. We found diverse hematopoietic potential between hESC lines depending on the culture or passage conditions. In contrast to fetal-derived hematopoietic precursors, none of the CD34+ precursors differentiated from hESCs were able to develop further into T cells. These data underscore the difficulties in the current strategy of hESC forward differentiation and highlight distinct differences between CD34+ hematopoietic precursors generated in vitro versus in vivo

    Identification of a Common Lupus Disease-Associated microRNA Expression Pattern in Three Different Murine Models of Lupus

    Get PDF
    Recent reports have shown that microRNAs (miRNAs) regulate vital immunological processes and have emerged as key regulators of immune system development and function. Therefore, it is important to determine miRNA dysregulation and its pathogenic contribution in autoimmune diseases, an aspect not adequately addressed thus far.In this study, we profiled miRNA expressions in splenic lymphocytes from three murine lupus models (MRL-lpr, B6-lpr and NZB/W(F₁)) with different genetic background by miRNA microarray assays and Real-time RT-PCR. Despite the genetic differences among these three lupus stains, a common set of dysregulated miRNAs (miR-182-96-183 cluster, miR-31, and miR-155) was identified in splenocytes when compared with age-matched control mice. The association of these miRNAs with the disease was highlighted by our observation that this miRNA expression pattern was evident in NZB/W mice only at an age when lupus disease is manifested. Further, we have shown that the miRNA dysregulation in MRL-lpr mice was not simply due to the activation of splenocytes. By Real-time RT-PCR, we confirmed that these miRNAs were upregulated in both purified splenic B and T cells from MRL-lpr mice. miR-127 and miR-379, which were greatly upregulated in splenocytes from lpr mice, were moderately increased in diseased NZB/W mice. In addition, Real-time RT-PCR revealed that miR-146a, miR-101a, and miR-17-92 were also markedly upregulated in splenic T, but not B cells from MRL-lpr mice.The identification of common lupus disease-associated miRNAs now forms the basis for the further investigation of the pathogenic contribution of these miRNAs in autoimmune lupus, which will advance our knowledge of the role of miRNAs in autoimmunity. Given that miRNAs are conserved, with regard to both evolution and function, our observation of a common lupus disease-associated miRNA expression pattern in murine lupus models is likely to have significant pathogenic, diagnostic, and/or therapeutic implications in human lupus

    Functional Energetics of CD4+-Cellular Immunity in Monoclonal Antibody-Associated Progressive Multifocal Leukoencephalopathy in Autoimmune Disorders

    Get PDF
    BACKGROUND: Progressive multifocal leukoencephalopathy (PML) is an opportunistic central nervous system- (CNS-) infection that typically occurs in a subset of immunocompromised individuals. An increasing incidence of PML has recently been reported in patients receiving monoclonal antibody (mAb) therapy for the treatment of autoimmune diseases, particularly those treated with natalizumab, efalizumab and rituximab. Intracellular CD4(+)-ATP-concentration (iATP) functionally reflects cellular immunocompetence and inversely correlates with risk of infections during immunosuppressive therapy. We investigated whether iATP may assist in individualized risk stratification for opportunistic infections during mAb-treatment. METHODOLOGY/PRINCIPAL FINDINGS: iATP in PHA-stimulated, immunoselected CD4(+)-cells was analyzed using an FDA-approved assay. iATP of mAb-associated PML (natalizumab (n = 8), rituximab (n = 2), efalizumab (n = 1)), or other cases of opportunistic CNS-infections (HIV-associated PML (n = 2), spontaneous PML, PML in a psoriasis patient under fumaric acids, natalizumab-associated herpes simplex encephalitis (n = 1 each)) was reduced by 59% (194.5±29 ng/ml, mean±SEM) in comparison to healthy controls (HC, 479.9±19.8 ng/ml, p<0.0001). iATP in 14 of these 16 patients was at or below 3(rd) percentile of healthy controls, similar to HIV-patients (n = 18). In contrast, CD4(+)-cell numbers were reduced in only 7 of 15 patients, for whom cell counts were available. iATP correlated with mitochondrial transmembrane potential (ΔΨ(m)) (iATP/ΔΨ(m)-correlation:tau = 0.49, p = 0.03). Whereas mean iATP of cross-sectionally analysed natalizumab-treated patients was unaltered (448.7±12 ng/ml, n = 150), iATP was moderately decreased (316.2±26.1 ng/ml, p = 0.04) in patients (n = 7) who had been treated already during the pivotal phase III trials and had received natalizumab for more than 6 years. 2/92 (2%) patients with less than 24 months natalizumab treatment revealed very low iATP at or below the 3(rd) percentile of HC, whereas 10/58 (17%) of the patients treated for more than 24 months had such low iATP-concentrations. CONCLUSION: Our results suggest that bioenergetic parameters such as iATP may assist in risk stratification under mAb-immunotherapy of autoimmune disorders

    Lack of the Long Pentraxin PTX3 Promotes Autoimmune Lung Disease but not Glomerulonephritis in Murine Systemic Lupus Erythematosus

    Get PDF
    The long pentraxin PTX3 has multiple roles in innate immunity. For example, PTX3 regulates C1q binding to pathogens and dead cells and regulates their uptake by phagocytes. It also inhibits P-selectin-mediated recruitment of leukocytes. Both of these mechanisms are known to be involved in autoimmunity and autoimmune tissue injury, e.g. in systemic lupus erythematosus, but a contribution of PTX3 is hypothetical. To evaluate a potential immunoregulatory role of PTX3 in autoimmunity we crossed Ptx3-deficient mice with Fas-deficient (lpr) C57BL/6 (B6) mice with mild lupus-like autoimmunity. PTX3 was found to be increasingly expressed in kidneys and lungs of B6lpr along disease progression. Lack of PTX3 impaired the phagocytic uptake of apoptotic T cells into peritoneal macrophages and selectively expanded CD4/CD8 double negative T cells while other immune cell subsets and lupus autoantibody production remained unaffected. Lack of PTX3 also aggravated autoimmune lung disease, i.e. peribronchial and perivascular CD3+ T cell and macrophage infiltrates of B6lpr mice. In contrast, histomorphological and functional parameters of lupus nephritis remained unaffected by the Ptx3 genotype. Together, PTX3 specifically suppresses autoimmune lung disease that is associated with systemic lupus erythematosus. Vice versa, loss-of-function mutations in the Ptx3 gene might represent a genetic risk factor for pulmonary (but not renal) manifestations of systemic lupus or other autoimmune diseases
    corecore